

 ARL-TR-8029 ● MAY 2017

 US Army Research Laboratory

A Survey on Security Isolation of
Virtualization, Containers, and Unikernels

by Michael J De Lucia

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-8029 ● MAY 2017

 US Army Research Laboratory

A Survey on Security Isolation of
Virtualization, Containers, and Unikernels

by Michael J De Lucia
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

May 2017
2. REPORT TYPE

Technical Report
3. DATES COVERED (From - To)

September 2016–October 2017
4. TITLE AND SUBTITLE

A Survey on Security Isolation of Virtualization, Containers, and Unikernels
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Michael J De Lucia
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CIN-D
Aberdeen Proving Ground, MD 21005-5067

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-8029

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Virtualization, containers, and unikernels are the fundamental technologies that enabled the widespread use of the cloud;
therefore, a comparison of their security isolation characteristics is necessary to understand the potential threats. Each of these
technologies contains subtle differences in the methodology and software architecture to provide secure isolation between
guests. All 3 of these technologies commonly provide the same functionality with varying degrees of overhead; however, the
security isolation is based on a vastly different approach. This report first gives the background of each of these technologies
followed by the security isolation aspects of each technology. A suggestion on metrics to further evaluate security characteristics
of each technology is proposed to guide future evaluations.

15. SUBJECT TERMS

security isolation, virtualization, containers, unikernels, the cloud

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

18

19a. NAME OF RESPONSIBLE PERSON

Michael J De Lucia
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

410-278-6508
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.
iii

Contents

List of Figures iv

List of Tables iv

1. Introduction 1

2. Background and History 1

3. x86 Processor Ring Levels 2

4. Virtualization 2

4. Containers 6

6. Unikernels 7

7. Isolation Comparisons 8

8. Conclusions 9

9. References 11

Distribution List 12

Approved for public release; distribution is unlimited.
iv

List of Figures

Fig. 1 Hardware virtualization ring levels ... 3

Fig. 2 Microkernel ... 4

Fig. 3 Monolithic kernel .. 5

Fig. 4 Docker ... 7

Fig. 5 Traditional VM vs. unikernel .. 8

List of Tables

Table 1 Comparison of security characteristics ... 9

Approved for public release; distribution is unlimited.
1

1. Introduction

Virtualization, containers, and unikernels are the fundamental technologies that
enabled the widespread use of the cloud; therefore, a comparison of their security
isolation characteristics is necessary to understand the potential threats. Each of
these technologies contains subtle differences in the methodology and software
architecture to provide secure isolation between guests. All 3 of these technologies
commonly provide the same functionality with varying degrees of overhead;
however, the security isolation is based on a vastly different approach. This report
first gives the background of each of these technologies, followed by the security
isolation aspects of each technology. A suggestion on metrics to further evaluate
security characteristics of each technology is proposed to guide future evaluations.

2. Background and History

Virtualization of x86 systems is a fundamental technology that has been in
existence for some time, whereas containers are rapidly being adopted and
unikernels are just emerging. An x86 virtualization solution was initially released
in 1998 by VMware to provide a software-based solution, and the initial release of
the ESXi type 1 bare-metal hypervisor was developed in 2001.1 In that same year,
XEN released an open-source type 1 bare-metal hypervisor. At that time, all
virtualization was achieved in software, resulting in slower performance and
additional work for the hypervisor. In 2005, Intel introduced hardware
virtualization extensions, commonly referred to as “hardware-assisted
virtualization” (i.e., Intel VT-x and VT-d).1 These extensions were added to the
processor to simplify the tasks of a hypervisor and increase performance. In 2007,
KVM released a Linux kernel module-based hypervisor, which leveraged
hardware-assisted virtualization extensions.1 Since 2013, the trend has moved from
virtualization toward containers. However, containers are not virtualization but
lend themselves to similar concepts. Containers assisted in the increased utilization
of hardware within a cloud environment by reducing the server (e.g., web server,
database server) footprint, resulting in an increased number of services a single
physical host could run. Then, in 2014, the concept of a unikernel was introduced
to make the server footprint even smaller and increase performance.2 The evolution
of each of these technologies improves performance and builds on fundamental
security isolation at the kernel or processor level in different ways. To better
understand these differences, a brief introduction and review of the x86 processor
ring levels follows.

Approved for public release; distribution is unlimited.
2

3. x86 Processor Ring Levels

To comprehend the security aspects of virtualization, container, and unikernel
technology, an understanding of the x86 processor security-ring model is essential.
The x86 has a concept called security rings (ring 0-3) to define the privilege level
of instructions run within the processor. Conventionally, ring level 0 is the most
privileged level and the only level that can communicate directly with the hardware,
whereas ring level 3 is the least privileged. These security rings are enforced at the
processor level as memory is accessed. Traditional operating systems (OSs)
leverage these privilege levels with ring level 0 for kernel space, ring level 3 for
user space, and ring levels 1 and 2 are not used.

Within most OSs, kernel space contains the drivers and fundamental components
that communicate directly with the hardware, whereas the user space contains the
applications running on the OS. For example, because a user application such as a
Web browser needs to access the hardware, a system call into the kernel is made,
and during this time a context switch will happen. The context switch from the user
space to the kernel space occurs and allows the kernel to communicate directly with
the hardware on behalf of the Web browser. In addition, traditional hardware allows
each process to operate on pages within the main memory. Each running process
contains a page table to convert the virtual memory address to the physical memory
addresses within main memory. These page tables also contain access rights and
the associated ring level of the process. The page tables can only be modified by
the kernel (ring 0 process) and cannot be modified by a user-level process. Every
process contains its own page table of the memory space available to it to prevent
user processes from interfering with one another. These ring levels combined with
the hypervisor (“kernel”) are what provide isolation between virtual machines
(VMs) and are key to virtualization security isolation concepts. The ring levels are
leveraged in virtualization by a hypervisor, which is either implemented as a
separate hypervisor kernel or as a Linux Kernel Module.

4. Virtualization

In virtualization, the hypervisor provides a layer between the guest OS and the
physical hardware. There are 2 different types of hypervisors: type 1 (e.g., VMware
ESXi, KVM, and XEN), which is bare metal, and type 2 (e.g., VMware
Workstation, and Virtual Box), which runs on a host OS. The hypervisor is
responsible for communicating directly with and sharing the hardware by
scheduling central processing unit (CPU) time for each guest VM and allocating
virtual memory from the physical memory to each VM. As discussed earlier, only
ring level 0 holds the privileges necessary to communicate directly with the

Approved for public release; distribution is unlimited.
3

hardware. Therefore, the hypervisor must run at ring level 0. As a result, the guest
VM kernel must be run at a lower privilege level, which does not allow direct
communication to the hardware, resulting in a kernel failure.

The traditional software approach to virtualization is to either modify the guest VM
kernel code or transparently trap these privileged instructions. VMware pioneered
the approach of transparently trapping privileged instructions and scanning
memory of the guest VM and then rewriting these instructions to redirect through
the hypervisor.1 Another approach to this problem is called paravirtualization,
which relies on modification of the guest VM kernel. This technique requires
patches to be applied to the guest VM kernel to communicate indirectly through the
hypervisor to the hardware. Although these solutions provide an adequate approach
to virtualization, each requires some sort of modification to the guest VM kernel.
To further improve performance and decrease the complexity of the hypervisor,
hardware-assisted virtualization was developed to provide a hardware-based
solution, which extends the processor instruction set.

Hardware-assisted virtualization extends the x86 processor instruction set to allow
virtualization within hardware, allowing a reduction of complexity of the
hypervisor and overhead, leading to an increase in performance. Although both
AMD and Intel have similar solutions, the focus of this discussion is Intel. In 2005,
Intel introduced hardware-assisted virtualization support to their processors with
VT-x and VT-d. The extended instruction set has support for a guest and host
domain, which is commonly referred to as ring level -1 (Fig. 1). These extensions
allow the hypervisor to run in the host domain, whereas the guest VMs run in the
guest domain, thus allowing the guest VM kernel to run at ring level 0. Similar to
the traditional case, ring level 0-3 exists in both guest and host domains. In addition,
the extensions assist with memory management for each guest VM and can also
allow guest VMs direct access to a dedicated network card and other peripheral
devices. Hardware-assisted virtualization is offered as an option in each of the
hypervisor vendors surveyed for this report.

Fig. 1 Hardware virtualization ring levels

Approved for public release; distribution is unlimited.
4

There are many different hypervisor platforms available, such as Microsoft Hyper-
V, VMware ESXi, KVM, and XEN. This report focuses on both KVM and XEN
with the use of hardware-assisted virtualization, because both platforms leverage
hardware-assisted virtualization and are open source with a greater amount of
documentation available. In addition, QEMU can be used on both hypervisors to
provide hardware emulation. The purpose of QEMU is to allow an unmodified
guest OS to share other hardware such as networking, storage (input/output [I/O]),
and many other devices. Both XEN and KVM offer paravirtualization for I/O
devices as an alternative to QEMU to increase performance at the cost of modifying
the guest OS. XEN and KVM provide functionality of virtualization but they differ
greatly in the design of the software architecture.

XEN’s architecture was designed as a hypervisor microkernel (Fig. 2) to be
separated from the drivers and administration, which are hosted within a privileged
VM commonly referred to as dom0. The other unprivileged guest VMs running on
the hypervisor are referred to as domU. The privileged VM, dom0, can
communicate with all of the other untrusted VMs through a shared memory ring
setup within the XEN hypervisor. In hardware-assisted virtualization, the XEN
hypervisor is running within the host domain, whereas dom0 is running within the
guest domain. Both the hypervisor and the guest VM OS kernel are running at ring
level 0 within the host and guest domain, respectively. The dom0 OS is based on a
customized Linux kernel. XEN offers the option of either using paravirtualization
or QEMU to communicate from the guest OS to the physical hardware devices.
Paravirtualization requires patching of the guest OS kernel, whereas QEMU does
not require patching of the guest OS kernel. In addition, XEN allows for further
separation of drivers into respective driver domains, similar to dom0. These driver
domains provide for further isolation of specific drivers. For example, the network
drivers could be separated into a separate network driver domain. It has been proven
with the use of QubesOS3 that these domains provide a strong amount of isolation
to the specific driver. The strong amount of isolation between drivers is enabled by
the microkernel design of XEN.

Fig. 2 Microkernel

Approved for public release; distribution is unlimited.
5

In contrast, KVM is a monolithic (Fig. 3) design, leveraging the existing Linux
kernel to provide administration and drivers, with a KVM kernel module
composing the hypervisor functionality. The KVM hypervisor views each guest
VM as a Linux-based process. Additional isolation between each guest VM is
provided by SELinux, which restricts process privileges. From an architectural
perspective, KVM can be considered a monolithic architecture because the
hypervisor kernel module, drivers, and administration tools are all hosted within
the Linux kernel. In hardware-assisted virtualization, the kernel module and drivers
and the KVM user process are run within the host domain at ring levels 0 and 3,
respectively. Paravirtualization for hardware I/O drivers could also be leveraged in
KVM. Although, the drivers and the hypervisor kernel module are both located
within the kernel, there is no isolation between them.

Fig. 3 Monolithic kernel

As discussed earlier, both XEN and KVM are architecturally different in terms of
the hypervisor design. XEN contains a separation between the hypervisor kernel
and the driver modules within dom0, resulting in a microkernel architecture. In
comparison, KVM combines both the hypervisor module and the driver modules
within the Linux kernel, resulting in a monolithic kernel architecture. In the XEN
microkernel architecture, the hypervisor and drivers (dom0) run at different
privilege levels of host and guest domain, respectively, with the use of hardware-
assisted virtualization. In KVM and hardware-assisted virtualization, both the
hypervisor and drivers run at ring level 0 within the host domain. It has been argued
that a microkernel architecture provides better isolation at the cost of additional
layers of separation and complexity and allowed seemingly trusted code to be run
in an untrusted domain; however, monolithic architecture executed trusted code
within a trusted domain, was less complex, but allowed the possibility of hypervisor
compromise.4

The ability to leverage hardware-assisted virtualization with XEN and split drivers
in separate driver domains allows trusted code to be run in trusted domains. For
example, an attacker compromising a network driver domain will not be able to
escape to an application or kernel of a guest VM and will not be able to compromise
the hypervisor. The fundamental reason for this greater amount of protection is
attributed to a greater degree of isolation provided by the XEN hypervisor design.
Although XEN allows for a greater degree of isolation between the hypervisor and
the drivers, KVM still provides a degree of isolation between the hypervisor and

Approved for public release; distribution is unlimited.
6

guest VMs, which is increased by the use of hardware-assisted virtualization.
Through the use of XEN, paravirtualization, and hardware-assisted virtualization,
a far greater degree of isolation exists between drivers, hypervisor, and guest VMs
as a result of a microkernel architecture. The use of paravirtualization allows for
seemingly trusted code to be executed at a privilege level of 0 while still allowing
for a microkernel architecture. However, there is still a large amount of overhead
within the guest domains, with a large amount of redundant functionality (process
scheduling, driver code, etc.) in the guest kernels. Although reduction of overhead
can lead to increased performance, it can also help to increase security by
decreasing the complexity. The greater the degrees of complexity and introduction
of additional code lead to a chance of added vulnerabilities. Further work must be
performed to provide a clear delineation between the boundaries and trust levels of
each component (hypervisor, guest domains, and drivers) and eliminate the
redundant overhead, perhaps by using unikernels or containers.

4. Containers

Containers provide similar functionality to virtualization, but there are several
subtle differences. The concept of containers was developed to reduce the footprint,
allowing developers to ease the transition from the development and testing phase
to deployment in production. Containers enable further use of the tremendous
computational power of modern hardware. The fundamental Linux construct of
namespaces, cgroups, and capabilities makes the container concept possible. There
are many container products available, such as Flockport LXC, Dockers, and many
others. In addition, Microsoft has recently started offering Windows containers in
Windows Server 2016 and Windows 10. While there are some differences between
container solutions, this report focuses on Dockers, as the fundamental concepts are
the same.

Each separate Docker application is a component called a microservice, which can
be combined to compose a larger application. A Docker container is a specific
instance of an image, which is a union read-only file system, combining several
layers (different file systems) and contains the application and dependencies to be
executed. These images are stored in a registry that can be either public or private.
The Docker Engine is responsible for creating a fresh container instance from the
images stored within the registry, setting network configurations and namespaces,
and restricting the allowed Linux kernel capabilities for the container.

As seen in Fig. 4, the Docker Engine runs as an application with root privileges
within the ring level 3 (user space), whereas the namespaces and Linux kernel
capabilities are enforced by the Linux kernel at ring level 0. The results of an

Approved for public release; distribution is unlimited.
7

investigation into Docker Security6 concluded that Docker was secure in terms of
isolation between each container and provided a significant amount of network
isolation. The only negative finding was the vulnerability of traffic capture/sniffing
because all of the traffic is sent over a bridge interface of the host system to each
container, which is common within any networked environment.6

Fig. 4 Docker

However, because the Docker Engine is running within the user space, all
containers share the same kernel (shown in Fig. 4). As a result, if the kernel is
compromised, all containers running on the host will be compromised as well. In
addition, there is no isolation between each of the drivers and the kernel namespace
mechanism providing isolation between containers. Each container is simply a
process running on the same kernel at the ring level 3 privilege. In addition, other
user space applications (ring level 3) running on the host could allow the ability to
interfere with the container processes that are running. Although containers provide
an adequate amount of isolation between each other, unikernels were introduced
and can provide even more isolation with a further reduced attack surface and a
dramatic increase in runtime performance.

6. Unikernels

Unikernel technology was introduced by the University of Cambridge in 2013–
2015 with the research and development of MirageOS. Since that time, several
other alternatives to MirageOS have been introduced such as OSv and Rump
kernels. All of these unikernels are based on the same concept of reducing the
footprint of an application running in the cloud. For example, traditionally, each
Web server application running in the cloud requires the extra overhead of the OS
containing a monolithic kernel that carries unnecessary code and services for a
single application (Fig. 5).

Approved for public release; distribution is unlimited.
8

Fig. 5 Traditional VM vs. unikernel

Unikernel is a new approach to building a specialized kernel that contains the
application code, runtime (i.e., Mirage Runtime in MirageOS), and necessary
kernel dependencies. This specialized unikernel can then be run on a hypervisor.
This concept again allows for the building of a mircoservices architecture and is
sometimes referred to as a “library operating system”.2 Similar to containers,
unikernels are only able to run a single process. Therefore, if multiple parallel
instances are required, the unikernel must be duplicated and run several times on
the hypervisor. The hardware consumption constraints and scheduling of hardware
access is handled by the hypervisor. For example, the MirageOS system contains
many different core fundamental library components such as the TCP/IP
(Transmission Control Protocol/Internet Protocol) () module to leverage in building
a single application.2 In MirageOS, the application and all of the dependency
components and Mirage Runtime are “compiled” into a single unikernel to run on
the hypervisor.2 The footprint of these unikernels are considerably smaller than a
full VM containing an OS and application. In addition, the boot time is measured
in milliseconds, and networking performance has been shown to be better than a
traditional VM-based server.2

The increase in performance, with respect to networking, is partially attributed to
the application running within the same address space as the “kernel components”,
alleviating a context switch between privilege levels for the user application and
kernel. In a unikernel, a delineation between user and kernel space does not exist.
Therefore, both the user application and core fundamental kernel components are
running at the same privilege of ring level 0. In addition, the attack surface is
reduced because unnecessary services and code are removed, leaving only
necessary kernel dependencies. The isolation between each unikernel is provided
by the hypervisor, similar to the VM process. Unikernel technology is still in its
infancy and will require further research to streamline the ease of unikernel
application development and deployment.

7. Isolation Comparisons

Each of these 3 technologies are similar in function but have subtle differences in
security characteristics, making some more isolated and secure than others (see

Approved for public release; distribution is unlimited.
9

Table 1 for comparisons). The greatest amount of isolation provided between each
instance is virtualization. The isolation provided is attributed to the isolation by the
hypervisor, which leverages the memory segmentation provided in hardware by
ring levels and hardware virtualization extensions. However, although hypervisors
provide good isolation, not all hypervisors provide the same amount of protection.
Both XEN and KVM provide a good amount of isolation, but XEN benefits from
separating the drivers from the hypervisor into a privileged VM. In addition,
paravirtualization and the use of separate driver domains can be combined in XEN
to provide an even stronger amount of isolation and protection from kernel and
driver vulnerabilities. The use of paravirtualization requires patching of the guest
OS kernel. Although patching is required, it is more secure than using QEMU to
run an unmodified guest OS. The QEMU module is extremely complex because it
emulates many hardware components, which leads to a higher possibility of
vulnerabilities.3 For example, the VENOM vulnerability found in 2015 leveraged
a bug in the floppy drive emulation code within QEMU to break out of the VM to
the host running the hypervisor.7 The hypervisor microkernel is the most trusted
component and should be well-isolated from other potential attack vectors. By
separating the drivers from the hypervisor, the microkernel allows the attack
surface to be reduced to the code of the hypervisor. Although many kernel drivers
have been shown to contain vulnerabilities, it is imperative to separate them from
the hypervisor.

Table 1 Comparison of security characteristics

Type Products Ring level Isolation
provided by

Image
size

Virtualization XEN, KVM, Hyper-V,
ESXi Level 0 or -1 Hypervisor Large

Container
Docker, Flockport
LXC

Level 3, enforced
at Level 0 Host Kernel Medium

Unikernel MirageOS, OSv,
Rumpkernel Level 0 Hypervisor Small

8. Conclusions

Although virtualization provides good isolation, it is unrealistic and extremely
inefficient to install a single application on an OS within a VM. A better alternative
in terms of footprint and reduced overhead would be to use containers, but this does
not offer strong isolation like virtualization. Nonetheless, the emerging concept of
unikernels could provide a small footprint, reduced overhead, and strong isolation
due to the use of the hypervisor; however, this is not the optimal solution due to its
lack of privilege levels within the unikernel itself. The unikernel lacks the ability

Approved for public release; distribution is unlimited.
10

to separate a seemingly trusted “kernel code” from the application code itself. This
means the unikernel kernel code and application code are running at the same ring
level of 0 while running on a hardware-assisted hypervisor. Because both
application code and kernel code are running at the same privilege level, this
alleviates the need for processor context switches, which partially contributes to the
performance speedup. Although the combination of hypervisors and unikernels
could be considered as an “adequate” solution, an “optimal” solution has not been
developed yet.

An optimal solution, in terms of security isolation, requires the separation of trusted
versus untrusted code, reduced overhead, and an increase in performance. A
combined approach for an optimized solution will require the use of many of the
best features of each of the 3 technologies. In the search for an optimal solution, it
is imperative to have metrics to assess the solution. Proposed metrics include
architectural differences (monolithic vs. microkernel), the use of privilege levels
(ring 0-3), and attack surface measurements. These metrics will help guide the
experimentation and uncover vulnerabilities that are not otherwise apparent.
Further analysis and experimentation of all 3 of these technologies are required to
advance the security state of applications. Each technology brings a security aspect
to assist in the advancement of a secure, small footprint, and reduced overhead
environment. A hybrid combination of all 3 technologies could show potential in
advancing the security state of applications.

Approved for public release; distribution is unlimited.
11

9. References

1. Understanding full virtualization, paravirtualization, and hardware assist.
Vmware; 2008 Mar 11 [accessed 2016 Sep 23]. http://www.vmware.com/
techpapers/2007/understanding-full-virtualization-paravirtualizat-1008.html.

2. Madhavapeddy A, Scott D. Unikernels: the rise of the virtual library operating
system. Commun ACM. 2014;57(1):61–69.

3. Rutkowska J, Wojtczuk R. Qubes OS Architecture. Invisible Things Lab;
2010 [accessed 2016 Aug 15]. https://www.qubes-os.org/attachment/wiki
/QubesArchitecture/arch-spec-0.3.pdf.

4. Shropshire J. Analysis of monolithic and microkernel architectures: towards
secure hypervisor design. Presented at the 47th Hawaii International
Conference on System Science; 2014 Jan 6–9; Waikoloa, Hawaii.

5. Getting started with LXC. Flockport; 2014 [accessed 2016 Sep 23].
https://www.flockport.com/lxc-guide/.

6. Bui T. Analysis of Docker security. Aalto (Finland): Aalto University School
of Science; 2015 Jan 13 [accessed 2016 Sep 23]. http://arxiv.org/abs/
1501.02967.

7. Venezia P. The venom vulnerability: little details bite back. InfoWord; 2015
May 18 [accessed 2017 Jan 9]. http://www.inforworld.com/article/2922315
/virtualization/venom-security-vulnerability-little-details-bite-back.html.

8. Chisnall D. The definitive guide to the XEN hypervisor. Upper Saddle River
(NJ): Prentice Hall; 2007.

9. Docker Overview. Docker; 2016 [accessed 2016 Sep 22]. https://docs.docker
.com/engine/understanding-docker/.

10. KVM – kernel-based virtual machine. Redhat; 2015 Jan 20 [accessed 2016
Sep 29]. https://www.redhat.com/en/resources/kvm-%E2%80%93-kernel
-based-virtual-machine.

https://www.redhat.com/en/resources/kvm-%E2%80%93-kernel

Approved for public release; distribution is unlimited.
12

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO L
 IMAL HRA MAIL & RECORDS
 MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 11 DIR USARL
 (7 PDF, RDRL SER
 4 HC) P AMIRTHARAJ
 RDRL SER E
 DEL ROSARIO (1 HC)
 J WILSON
 J PENN (3 HC)
 R PROIE
 E VIVEIROS
 RDRL WML B
 F DE LUCIA

	List of Figures
	List of Tables
	1. Introduction
	2. Background and History
	3. x86 Processor Ring Levels
	4. Virtualization
	4. Containers
	6. Unikernels
	7. Isolation Comparisons
	8. Conclusions
	9. References

